Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior

Authors
Anupama Sathyamurthy,
Kory R. Johnson, Kaya J.E. Matson, ...,
Michael C. Kelly, Matthew W. Kelley,
Ariel J. Levine

Correspondence
ariel.levine@nih.gov

In Brief
Sathyamurthy et al. use massively parallel single nucleus RNA-seq to probe spinal cord cell types and present an atlas of 43 neuronal populations. By using this approach after a sensory and a motor behavior, they were able to detect and molecularly identify activated neurons associated with each function.

Data and Software Availability
GSE103892

Highlights
- An atlas of adult mouse spinal cord cell types
- A resource of the molecular repertoires of 43 neuronal populations
- A simple method using snRNA-seq to identify activated neurons following behavior
Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior

Anupama Sathyamurthy,1,4 Kory R. Johnson,2,4 Kaya J.E. Matson,1 Courtney I. Dobrott,1 Li Li,1 Anna R. Ryba,1 Tzipporah B. Bergman,1 Michael C. Kelly,3 Matthew W. Kelley,3 and Ariel J. Levine1,5,*

1Spinal Circuits and Plasticity Unit, National Institute on Neurological Disorders and Stroke, Bethesda, MD 20892, USA
2Bioinformatics Section, Information Technology Program, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
3Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
4These authors contributed equally
5Lead Contact
*Correspondence: ariel.levine@nih.gov
https://doi.org/10.1016/j.celrep.2018.02.003

SUMMARY

To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq) to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease.

INTRODUCTION

To understand how networks of cells mediate behavior, it is necessary to classify the various cell types of the brain, spinal cord, and peripheral nervous system and to know which populations of cells are involved in specific functions. Gene expression-based definitions of cell identity have been a foundation of spinal cord biology for the past 30 years. In particular, the use of post-natal genetic markers to control defined classes of spinal cord neurons has enabled the functional characterization of many cell types and has advanced our understanding of how these populations contribute to normal sensory-motor behavior (Abraira et al., 2017; Azim et al., 2014; Bikoff et al., 2016; Bourane et al., 2015; Dougherty et al., 2013; Duan et al., 2014; Hilde et al., 2016; Koch et al., 2017b; Mishra and Hoon, 2013; Peirs et al., 2015; Satoh et al., 2016; Sun et al., 2009). However, there are three important limitations to this approach. First, there is no census of neuronal cell types in the adult spinal cord. The lack of such a resource limits the application and interpretation of genetic manipulations, and it is not known how previously described cell types relate to one another. Second, the unique gene expression profiles that endow cell types with their functional repertoires are not known. Third, we lack an unbiased approach to identify the set of spinal cord cell types associated with a given neural function, such as motor behavior or the response to a sensory stimulus.

Pioneering work using massively parallel single-cell sequencing has established that a cell’s transcriptional program is a powerful strategy for defining cell type (Campbell et al., 2017; Chen et al., 2017; Jaitin et al., 2014; Lake et al., 2016; Li et al., 2016; Macosko et al., 2015; Shin et al., 2015; Tasic et al., 2016; Usoskin et al., 2017; Villani et al., 2017). Furthermore, single-cell RNA sequencing has been adapted to provide unbiased detection of immediate-early gene expression in molecularly defined cell types following seizure, acute anxiety, or sensory experience in the striatum and visual cortex (Hrvatin et al., 2018; Wu et al., 2017).

We sought to develop an approach that simultaneously provides a single-cell gene expression census of the cell types of the adult spinal cord and the ability to overlay a map of the transcriptional signature of neuronal activity following behavior. To characterize the gene expression and cell-type composition of the adult mouse spinal cord, we used massively parallel single nucleus RNA-seq (snRNA-seq). We created a catalog of spinal cord neuronal cell types, characterizing 43 classes of neurons. Analysis of the genes expressed in each cell type provided a powerful resource for understanding the mechanistic basis of functional neuronal heterogeneity. This work also revealed distinct organizing principles for molecular heterogeneity between neuronal populations in the dorsal and ventral horns. To provide unbiased characterization of the classes of spinal neurons that were associated with defined behaviors, we performed this technique immediately following a painful sensory stimulation or a locomotor behavior. This approach could be used to reveal comprehensive single nucleus response maps for a range of behaviors and disease states, establishing an unprecedented...
link between single nucleus gene expression and circuit- and system-level function within the spinal cord.

RESULTS

snRNA-Seq Identification of Major Spinal Cord Cell Types
To adapt massively parallel RNA sequencing approaches to the spinal cord, we opted to perform single nucleus, rather than single cell, analysis for three key reasons: single nucleus transcriptional profiling accurately permits cell-type analysis, avoids experimental artifacts from transcriptional changes induced in intact cells during the tissue dissociation process, and can be performed easily from whole tissue, thereby minimizing gene expression changes caused by dissociation. This approach allows for the analysis of adult mouse spinal cord tissues, frozen human spinal cord tissue, and human biobank material (Grindberg et al., 2013; Lake et al., 2016, 2017; Matevossian and Akbarian, 2008).

Using this approach, we sequenced and analyzed 17,354 nuclei from adult mouse spinal cord and frozen adult human spinal cord. We next sought to modify Drop-Seq (Macosko et al., 2015), a droplet-based approach for massively parallel single-cell RNA capture, cDNA synthesis, and sequencing, to allow this technique to be used for single nuclei. We found that increasing the concentration of detergent in the Drop-Seq lysis buffer improved nuclear lysis and generated smaller droplets than standard Drop-Seq (mean 0.48 ± 0.06 nL SEM) (Figures S1B–S1D). To determine whether this approach enables single nucleus droplet encapsulation, we pooled human and mouse spinal cord nuclei and examined how many beads contained both human and mouse transcripts (Figure 1B). We found that 2% of droplets with a mouse nucleus also contained a human nucleus (4/196 mouse nuclei), which represents a calculated doublet rate of 4.1%. Thus, single nuclei can be obtained from difficult-to-dissociate and frozen human spinal cord tissue and can be processed through Drop-Seq with a simple buffer modification.

Using this approach, we sequenced and analyzed 17,354 nuclei from adult mouse lumbar spinal cord. We found seven major clusters that corresponded to the following cell types, based on marker expression: neurons (52% of total nuclei), oligodendrocytes (16% of total nuclei), a mixed population of meningeal and Schwann cells (14% of total nuclei), astrocytes (9% of total nuclei), vascular cells (5% of total nuclei), oligodendrocyte precursor cells (1% of total nuclei), and microglia (1% of total nuclei) (Figure 1D; Figure S1E; Table S1). The diversity of the RNA transcript yield that we obtained, reflected in the number of genes per nucleus, varied among cell types (Figure S1F).
Census of Adult Spinal Cord Neuronal Populations

To identify and characterize neuronal classes within the adult mouse spinal cord, 4,280 neuronal nuclei were analyzed and partitioned into 43 clusters (Figure 2A; Figure S2A; Table S2). We first characterized the neurotransmitter status, a core feature of neuronal identity, of each cluster by analyzing excitatory, inhibitory, and cholinergic marker expression. We found that 53% of neuronal nuclei were in 23 predominantly excitatory clusters (including 2 cholinergic clusters), 45% were in 18 predominantly inhibitory clusters, and 2.5% were in 2 clusters with both excitatory and inhibitory markers (Figure S3A). Within this latter group, only rare individual neuronal nuclei co-expressed excitatory and inhibitory markers (n = 2/109), which may reflect doublets and cannot account for the substantial fractions of excitatory and inhibitory marker-expressing nuclei in these clusters. Therefore, these two clusters contained separate excitatory and inhibitory populations that share overall similar gene expression.

Next, we analyzed relationships between clusters by performing Euclidean-based hierarchical clustering on the mean expression of each gene in each cluster (Figure 2B). A dendrogram presentation of these relationships revealed seven major groupings, five of which shared a common neurotransmitter status (groups 1, 2, 3, 5, and 7) (Figure 2B). To further analyze neurotransmitter status and spatial location across clusters, each population was colored by these features and plotted by t-distributed stochastic neighbor embedding (tSNE) analysis (Figure 2C). The structure of the tSNE distribution of neurons according to these parameters supported the importance of location and neurotransmitter status as defining features of spinal cord cell types. Accordingly, clusters were named by their spatial location (D, dorsal; V, ventral; or M, deep dorsal, intermediate, or “mid” cord) and their neurotransmitter status (E, excitatory; I, inhibitory; M, mixed; and C, cholinergic) (Figure 2).

A major difference in cluster organization was observed between dorsal and ventral clusters. tSNE visualization revealed that dorsal clusters form an outer ring of discrete groups while ventral clusters overlapped one another in the center of the plot, with deep dorsal and intermediate clusters between (Figure 2C). Similarly, dorsal clusters were generally present as homogeneous blocks in a cell consensus matrix and had high SC3 silhouette width consensus values (a measure that represents the diagonality of the matrix), while ventral clusters showed inter-relatedness with other ventral clusters and had low silhouette width consensus values (Figure S2). At a molecular level, markers for ventral clusters were often shared across ventral populations (as explained later). These differences were not based on a failure to segregate ventral neurons due to low molecular information content, because the number of genes per nucleus was 2,465 ± 33 in dorsal neurons (mean ± SEM). This analysis suggests a general principle that the dorsal horn of the spinal cord contains more molecularly distinct populations while the ventral horn displays overlapping gene expression patterns.

We next sought to determine what categories of genes drive neuronal diversity. Gene ontology (GO) term analysis of the
top genes associated with each cluster was performed. We found that neurotransmitter receptors and ion channels, transcription factors, and cyclic AMP (cAMP) signal transduction components are significantly over-represented among the top genes that contribute to defining these clusters (Figure 3A). Many genes within these molecular function families were enriched or specifically expressed in particular populations or related groups (Figures S3C–S3E).

To identify candidate marker genes for the 43 clusters, and to characterize their gene expression profiles, we further analyzed all genes that significantly contributed to defining each cluster. Many clusters were partially defined by previously established markers (Figure S3B) (Abraira et al., 2017; Bikoff et al., 2016; Koch et al., 2017a; Lu et al., 2015; Todd, 2017), and in most of these clusters, we identified new key genes (Figures 3B and 4). In addition, we identified previously unrecognized cell populations (Figure 4). Table S3 is a searchable database of the mean gene expression and the percent cluster membership for each gene. This provides the opportunity to probe the molecular identity of each population or to search across clusters for a gene of interest. A summary of each group of clusters with highlighted findings follows.

Group 1 was composed of the dorsal excitatory (DE) clusters DE-1–DE-3. These clusters shared expression of the transcription factor Ebf2 (together with DE-4–DE-7) and the γ-aminobutyric acid (GABA) receptor Gabrg3. They were peptidergic, expressing the enzyme Pam and the genes for neuropeptides Grp and/or Sst. DE-1 expressed the mu opioid receptor Oprm1, DE-2 expressed the peptide receptor Npy1r, and DE-3 expressed Ntrk2/TrkB.

Group 2 was composed of the dorsal inhibitory (DI) clusters DI-1–DI-3. These clusters shared expression of the peptide receptor Sstr2, as well as the glutamate receptor Grik2 and the potassium channel Kcnc2. DI-1 expressed Calb2/calretinin, and DI-2 and DI-3 were peptidergic, expressing the enzyme Pam and the genes for Gal (DI-2) and Pnoc/nociception (DI-3), as well as Nos1 (DI-3).

Group 3 was composed of the DE clusters DE-4–DE-10. There were two subgroups. DE-4–DE-7 expressed Ebf2 (together with DE-1–DE-3) and Calb1/calbindin and were peptidergic, expressing Pam, as well as Sst/SOM (DE-4 and DE-5), Tac2/NeurokininA (DE-5), Calca/CGRP (DE-5), Nts/neurotensin (DE-6), Penk/enkephalin (DE-6), and Cck (DE-7). DE-4 also expressed Prkcg/PKCγ. DE-8–DE-10 expressed the transcription factor Maf and were not peptidergic. DE-8 expressed Cbln2, DE-9 expressed Adarb2, and DE-10 expressed enriched levels of Slc17a8/vGlut3.

Group 4 was composed of the ventral inhibitory (VI) clusters VI-1–VI-5, ventral excitatory (VE) clusters VE-1–VE-4, ventral mixed (VM) clusters VM-1 and VM-2, and mid inhibitory (MI) deep dorsal clusters MI-1 and MI-2. Overall, this group shared expression of the transcription factors Esrrg/ERRγ and Foxp2, as well as the sodium channel Scn1a, which has been shown to correlate positively with maximum firing rate (Tripathy et al., 2017). Several ventral clusters (VI-1, VI-4, VI-5, VE-3, and VE-4) and MI-2 also shared expression of the peri-neuronal net components Acan and Bcan and the link protein Hapln1. This is consistent with the observation that peri-neuronal nets have been shown to surround many previously unidentified ventral neurons (Galtrey et al., 2008). Cluster VI-5 was also distinguished by being enriched for nearly all genes associated with the mammalian target of rapamycin (mTOR) complexes mTORC1 and mTORC2 that
play key roles in cell metabolism and survival (Laplante and Sabatini, 2012), including **mTOR**, **Rptor/RAPTOR**, **Mlst8/GbL**, **Deptor**, **Rictor**, and **Mapkap1/SIN1**, as well as the mTOR pathway regulators **Rheb**, **Tsc1**, and **Tsc2**. Surprisingly, many embryonic and early postnatal ventral cell fate markers were found within these clusters and may provide a link between the embryonic lineage-defined identity and the adult populations described here (Figure S3F) (Alvarez et al., 2005; Bikoff et al., 2016; Catela et al., 2015; Lu et al., 2015; Perry et al., 2015; Seredick et al., 2014). As examples, VE-1–VE-3 were enriched for embryonic lineage markers, including **Vsx2/Chx10**, **Shox2**, **Lhx3**, and **Lhx4**, and cluster VI-4 was enriched for the embryonic lineage dil6 markers **Wt1** and **Dmrt3** and the embryonic lineage V1-subtype markers **Chrm2** (Renshaw), **Pvalb** (1a inhibitory interneurons), and **Esrrb/Nr3b2**. However, many of these embryonically expressed genes had very low expression levels in these clusters, and even for the genes with stronger expression, it is not certain whether the same cells continue to express these genes from embryonic through adult stages.

Group 5 was composed of the DE clusters DE-11 and DE-12, which shared expression of the transcription factor **Sox5** and the potassium channel **Kcnd3**. DE-11 was peptidergic, expressing **Pam**, **Penk**, and **Tac1/substance P**, while DE-12 was not peptidergic but expressed the peptide receptor **Grpr**.

Group 6 was composed of a diverse collection of clusters: DI-4, DE-13–DE-16, MI-3, mid excitatory (ME) cluster ME-1, and ventral cholinergic (VC) clusters VC-1 and VC-2. Clusters DI-4 and DE-13–DE-16 were peptidergic, expressing **Npy** (DI-4), **Calc/CGRP** (DE-13), **Cck** and **Tac1/substance P** (DE-14), **Pdyn/dynorphin** (DE-15), and **Pitx2** (DI-5), **Pdyn** (VC-1), and **Tac1/substance P** (VC-2). VC-1 expressed the embryonic lineage V0c marker **Pitx2**. VC-2 expressed markers of spinal motoneurons, including **Prph/pep**-rin, **IsI1**, **Map1b**, **Nrg1**, and **Slt3**, as well as **Nkain1**, which has been shown to correlate positively with input resistance (Tripathy et al., 2017).

Group 7 was composed of the DI clusters DI-5–DI-9 and the deep dorsal cluster MI-4 that shared expression of the gluta**mate receptor Girk2**. These clusters expressed previously described DI transcription factors **Gbx1** (DI-5), **Lhx1** (DI-7), and **Rorb** (DI-9). DI-5 also expressed the estrogen receptor **Esr1**. DI-6 expressed **Cd3h** and **Kcnip2**, and DI-8 expressed **Nrg1/Neurogranin**.

Figure 4. Summary of 43 Spinal Cord Neuronal Populations

For each population, the cluster name, a putative cell-type assignment, and key marker genes are shown. Previously undescribed cell types and markers are shown in bold. The expression of the marker genes across clusters are shown as a heatmap of normalized mean gene expression. See also Table S3.
Collectively, these 43 clusters establish an atlas of spinal cord neuronal populations and their constituent molecules.

snRNA-Seq Following Behavior Identified Active Neurons

Having characterized the spinal cord neuron populations, we next considered that snRNA-seq could provide an unbiased, cell-type based characterization of neurons that express immediate-early genes following a behavioral paradigm. We found that direct isolation of nuclei did not induce \textit{Fos} RNA (Figure S1A) but that detectable \textit{Fos} expression in nuclei could be induced 5 min following a painful sensory stimulus (formalin hindpaw injection) (Figure S4). To determine whether \textit{Fos} RNA can be detected at the single nucleus level following behavior, snRNA-seq was performed following formalin injection or rotarod locomotion. \textit{Fos} was expressed in a higher proportion of nuclei following rotarod locomotion (1.6%) or formalin administration (1.9%) compared with baseline (0.48%), and the level of \textit{Fos} gene expression was significantly increased (0.0082 ± 0.0025 counts per million (cpm) after rotarod, 0.0175 ± 0.0040 cpm after formalin, and 0.0024 ± 0.0009 cpm at baseline; mean ± SEM; p < 0.001, ANOVA, corrected p value). Thus, massively parallel snRNA-seq following behavior detected a transcriptional signature of neuronal activity.

Next, we used the distribution of \textit{Fos} RNA expression to map neuronal activity across clusters following rotarod locomotion or formalin administration, because these experimental paradigms produce classic patterns of cFOS protein expression (Figure 5A) (Herdegen et al., 1994; Jasmin et al., 1994). During locomotion, each of the major ventral embryonic lineage domains gives rise to neurons that are important for specific features of locomotion, such as flexor and extensor alternation (V1- and V2b-derived cells) and left and right alternation (V2a-derived cells) (Crone et al., 2008; Zhang et al., 2014). In addition, cholinergic interneurons express cFOS protein following locomotion in cat, and these may correlate with V0c neurons (Huang et al., 2000; Zagoraiou et al., 2009). However, the identities of locomotor-associated intermediate and dorsal horn neurons are not well established, with the exceptions of protein kinase C gamma
(PKCa)-expressing neurons in the rat (Neumann et al., 2008) and Rorb-expressing neurons (Koch et al., 2017b). We hypothesized that the application of snRNA-seq following rotarod running would help to reveal the set of adult neurons that are active during locomotion.

Following locomotion, Fos RNA was detected in ventral clusters VC-1 (which includes Pitx2-expressing V0c neurons), VC-2 (spinal motoneurons), VE-4 (which includes putative V2a neurons) and VI-5 (which includes putative V1/V2b neurons), thereby confirming that these cell types are associated with locomotion (Figure 5B). We used markers to validate this approach and found that VE-4 (Chx10) and VI-5 cells (En1:Cre;Ai9) express cFOS after rotarod locomotion (Figure 5C). Within the intermediate zone and dorsal horn, clusters ME-1, MI-1, DE-5, DI-6, and DI-8 expressed Fos RNA, but we did not detect Fos RNA in cluster DE-4 that expresses Prkcg/PKCa (Figure 5B). This may be due to species differences or a technical false negative. Rorb expression is highest in cluster DI-9, which was not detected using this approach, but it is also present in cluster DI-8, which did express Fos after locomotion. Using markers for clusters ME-1 (Satb1) and DI-8 (Nrgn), we confirmed that these newly defined clusters express cFOS protein after locomotion, thereby expanding the known set of neuronal populations that are associated with this core behavior (Figure 5D).

Formalin administration is a well-established pain assay, and it has previously been shown to activate predominantly dorsal horn spinal cord neurons, including those that express Gal, Sstr2, Nos1, Npy, Penk, and Tac1/Nk1r, creating specific expectations for which clusters should be detected (Herdegen et al., 1994; Hessaini et al., 2010; Lee et al., 1993; Polgár et al., 2013). Following formalin injection, Fos RNA was observed in clusters DI-2 (which includes Gal and Sstr2-expressing neurons), DI-3 (which includes Nos1-expressing neurons), and DI-4 (which includes Npy-expressing neurons), confirming that these neurons express Fos after formalin administration, as well as DI-8, DI-9, DE-7, VI-4, VC-1, VC-2, and MI-2 (Figure 5C). Penk and Tac1/Nk1r are both distributed across several clusters. We used markers for clusters DI-4 (Npy), DI-8 (Nrgn), and DI-9 (Rorb) to validate these findings and found that these populations express Fos RNA or cFOS protein following formalin administration (Figure 5C). Thus, in both a sensory test and a motor behavior, massively parallel transcriptional profiling revealed new cell types that are associated with each function.

DISCUSSION

The spinal cord plays essential roles in sensory processing and motor control, but how the cells of the cord function together in networks to mediate behavior is not well understood. Here, we sought to identify spinal cord cell types and their contributions to behavior through single nucleus transcriptional profiling. Massively parallel snRNA-seq was used to analyze more than 17,000 nuclei from the adult mouse spinal cord. We created an atlas of spinal cord neuronal populations, characterizing 43 cell types. By applying snRNA-seq following behavior, we detected transcriptional signatures of neuronal activity and identified neuronal populations associated with a sensory and a motor function.

We have described 43 neuronal populations within the adult mouse lumbar spinal cord, including previously unrecognized cell types. This work establishes a cellular framework for the spinal cord and facilitates the comparison and integration of prior work that generally used single markers to define cell types. We detected clusters that correspond to nearly all previously described adult spinal cord neuronal populations, with the primary exceptions being populations that were previously described by a single marker gene that is expressed more broadly within the spinal cord (such as Penk and Pvalb).

The perspective afforded by massively parallel single nucleus sequencing also revealed an intriguing difference between dorsal and ventral neuronal populations. We found that dorsal neuron types were more distinct from one another, forming discrete clusters, while ventral neuron types were more closely associated with one another. Previously, most analysis of spinal cord cell types emphasized adult molecular markers in the dorsal horn and embryonic lineage-domain-defined cell types in the ventral horn. Together with our findings, this may reflect different organizing principles for neuronal identity in the dorsal and ventral spinal cord. It is possible that in the adult spinal cord, cellular identity in the dorsal horn is governed by restricted and ongoing expression of genes for specific cellular functions, whereas in the ventral horn, it is governed by factors defined during development, such as cell location, axon guidance, and genetically programmed synaptic specificity.

This work also reveals the molecular repertoire of each neuronal population, providing a significant extension of our understanding of spinal cord cell types. The searchable database that is included here (Table S3) will allow researchers to probe the complement of genes in cell types of interest and analyze the expression of genes of interest across clusters. This will serve as a powerful tool to advance our understanding of the molecular mechanisms that mediate functional heterogeneity among neuronal populations.

Despite the strengths of this work, three major limitations must be noted. First, we detected a lower number of genes per nucleus than is typically detected from whole cells or nuclei (Grindberg et al., 2013; Habib et al., 2016, 2017; Lacar et al., 2016; Lake et al., 2016; Macosko et al., 2015). This is likely due to several factors, including the lower amount of RNA in the nucleus compared with the whole cell, the trade-off between resolution and scale for low-throughput versus massively parallel approaches, technical differences such as mRNA capture and reverse transcription efficiency, and cell-type differences. Despite this first limitation, we obtained a sufficient number of genes per nucleus to permit successful clustering of neuronal populations. A second major limitation is that this work only characterized the cell types of the lumbar spinal cord. Although the major classes of known cell types are present along the full rostro-caudal axis of the spinal cord, work has revealed that distinct subpopulations may vary at different segmental levels (Francis et al., 2013; Hayashi et al., 2018; Sweeney et al., 2018). Accordingly, future work is necessary to fully characterize spinal cord cell types outside of the lumbar region. A third major limitation is that the use of snRNA-seq for
activity profiling can only identify cells that induced a transcriptional response above a detection threshold. As a result, this approach will not detect all neural activity, and negative results must be interpreted with caution.

Massively parallel single nucleus transcriptional profiling has the potential to reveal unprecedented knowledge about cell types, the transcriptional programs of cell types, and gene expression control in an array of in vivo settings in animal models. With this resource in hand, single nucleus transcriptional profiling can be used to probe spinal cord neuronal and non-neuronal responses to disease or injury, to study how the molecular and cellular composition of a tissue changes over time, and to reveal the selective loss of cell types during degeneration or gain of cell types during inflammation. Because nuclei are readily obtained from human patient-derived and archived bio-bank material, snRNA-seq can be applied to study human biology as well (Habib et al., 2017; Lake et al., 2016; Matevossian and Akbarian, 2008). We now have the tools to reach a new level in our understanding of the molecular and cellular mechanisms by which complex tissues mediate basic function, behavior, and disease.

EXPERIMENTAL PROCEDURES

Mice and Behavior

All animal work was performed in accordance with a protocol approved by the National Institute of Neurological Disorders and Stroke Animal Care and Use Committee. Balanced samples of male and female ICR/CD-1 wild-type mice, between 8 and 12 weeks old, were used for all experiments except those shown in Figure 5C, for which Er1a-Cre;A9 mice (Stock No. 007916 X Stock No. 007909, both from The Jackson Laboratory) were used. Formalin injection was done by injecting 30–40 μL of 2% paraformaldehyde into the plantar face of the hindpaw. Rotarod testing was done with a standard program accelerating from 0 to 40 rotations per minute over 5 min.

Nuclei Preparation

This protocol was adapted from Halder et al. (2016). Animals were euthanized by CO2 inhalation, the lumbar spinal cord was rapidly dissected, and dorsal root ganglia were removed. The cords were dounced in 500 μL of sucrose buffer (0.32 M sucrose, 10 mM HEPES [pH 8.0], 3 mM Mg-acetate, 0.1 mM EDTA, 1 mM DTT) with 0.1% Triton X-100 using five strokes with the A pestle (Kontes Dounce Tissue Grinder) followed by five strokes with the B pestle. The lysate was then diluted with 3 mL of sucrose buffer and was centrifuged at 3,200 g for 10 min. The supernatant was removed, and 3 mL of sucrose buffer was added to the pellet and incubated for 1–2 min; the loosened pellet was then transferred to an Oak Ridge centrifuge tube. The pellet was then homogenized using Ultra-Turrax on setting 1 for 1 min, 12 mL of density buffer (1 M sucrose, 10 mM HEPES [pH 8.0], 3 mM Mg-acetate, 1 mM DTT) was then added carefully below the nuclei layer, and the tube was centrifuged at 3,200 × g for 20 min. The supernatant was then rapidly poured off, and the nuclei on the walls of the tube were collected with 1 mL of PBS with 0.02% BSA and spun at 3,200 × g for 10 min. Nuclei were then resuspended in PBS with 0.02% BSA.

Drop-Seq and Analysis

Each Drop-Seq sample was produced from the lumbar cords of a pair of ICR mice 8–12 weeks old. There were nine independent samples for baseline (four male and five female), five independent samples for formalin control (three male and two female), and five independent samples for rotarod behavior (three male and two female).

The Drop-Seq method was performed as previously described (Macosko et al., 2015) except that the following concentrations were used: 225 nuclei/μL, 250 beads/μL, and 0.7% sarkosyl in the lysis buffer; flow rates were adjusted accordingly. Clustering was performed using SC3 consensus clustering (Kiselev et al., 2017). All antibodies and in situ hybridization probes used for validation are listed in Table S4.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw sequencing data reported in this paper is GEO: GSE103892.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, four figures, and four tables and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.02.003.

ACKNOWLEDGMENTS

Human adult spinal cord tissues were procured by the National Disease Research Interchange (NDRI) with support from NIH grant 2 U42 OD011158 and the assistance of Dr. Christopher Grunseich and Dr. Kenneth Fischbeck. We thank Dr. Amab Barik for expertise and assistance with in situ hybridization, Dr. Alexander Chersel for sharing reagents, and Dr. Yueheng Li for expertise and assistance with sequencing. The Lbx1 antibody was a gift of Dr. Carmen Birchmeier. This research was supported by NIH Intramural Research Program funding from the NINDS (1 ZIA NS003153 02 to A.S., K.R.J., L.L., K.J.E.M., C.I.D., A.R.R., T.B.B., and A.J.L.) and the NICD (1 ZIA DC000059 18 to M.C.K. and M.W.K.).

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

https://doi.org/10.1016/j.celrep.2018.02.003.

Supplemental Information includes Supplemental Experimental Procedures, four figures, and four tables and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.02.003.

